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1. Introduction 

Cybersecurity refers to methods and practices designed for protection of networks, computers, programs, 

and data from attack, damage, or unauthorized access (Rouse, 2016). Cybersecurity has emerged as a threat 

in every field that relies on communications. Transportation operation and management systems also utilize 

wired and wireless communications for managing roadways and are at significant risk of such cyberattacks. 

These systems were closed proprietary systems (isolated systems) in the past and had very limited cyber 

vulnerabilities. Those proprietary systems have now transformed into more open systems with increased 

accessibility due to the emergence of network computing and reliance on emerging technologies such as the 

internet of things (IoT), and connectivity.  The National Transportation Communication for Intelligent 

Transportation Systems (ITS) Protocol (NTCIP) utilize center-to-center communications that rely on 

request-based protocols through XML messages (NTCIP9010, 2003). These protocols rely on the 

assumptions that most attacks are from the inside, and that hackers make up only a small portion of total 

intrusions, thus have no built-in security (NTCIP1105, 2011). The U.S. DOT has also taken a huge initiative 

to develop a security credential management system (SCMS) (Kreeb & Gay, 2014)—a message security 

solution for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication. However, 

communication dependency opens a wide array of access points, which makes these systems vulnerable to 

cyberattacks and the least understood in terms of cybersecurity. 

This research is based on the premise that perfect protection from cyberattacks is not realistic. Thus, the 

proposed research focuses on analyzing the vulnerability of cooperative driving relying on infrastructure-

based communication from real-field experimental data collected at the Aberdeen center in Maryland. 

Multiple cyberattacks including sensor anomalies, fake BSMs, replay and denial of service were emulated. 

Furthermore, the driving conditions from the field experiment were emulated within a realistic simulation 

environment to test the consequences of different types of cyberattacks on safety effects of transportation 

systems and analyze crash types and severity. Long short-term memory with Gaussian mixture (LAGMM) 

model were utilized to design efficient and effective anomaly detection method for accounting the temporal 

relations of trajectories, so that anomalous behavior can be detected in real-time and the severe 

consequences of cyberattack or sensor anomalies can be avoided.  

2. Past Literature 
This section reviews past studies on cybersecurity in cooperative intelligent systems. Cyber physical 

systems (CPS) security has gathered a lot of attention in recent years due to the proliferation of smart 



devices in smart cities. A recent study (Habibzadeh et al., 2019) provided a detailed overview of theoretical 

and practical security challenges faced by CPS. While a few studies have conducted quantitative 

evaluations of cyber risks in CAVs, most prior studies have focused on qualitative evaluation of cyber 

risks. A study (Micro, 2017) assessed connected cars for security concerns. They identified Electronic 

Control Units (ECUs) as a source of vulnerability to cyberattacks. The authors asserted that the over 100 

million lines of code per vehicle allow hackers to target software flaws. (Bertini et al., 2016) conducted a 

survey of Oregon DOT staff to analyze how prepared they are for CAVs. They found that 39-40% of 

respondents were concerned with security risks of CAVs. Another study (Bhavsar et al., 2017) assessed the 

risk of automation failure in a mixed traffic stream. The probability associated with failure of each 

autonomous component was estimated using fault tree analysis, resulting in a 14% failure probability of 

autonomous vehicular components. (Hasan et al., 2020) conducted a survey of the vehicle to everything 

ecosystem. The study reviewed security activities, standards, and existing defense mechanisms. They 

further identified existing gaps within security solutions and provided a description of open issues. 

Some studies have assessed cyberattacks on CAVs using quantitative methods. (Amoozadeh et al., 

2015) used OMNET++ to assess the falsified messages and radio jamming for their impact on ten CACC 

vehicles operating on a single lane. The desired acceleration was modified by the adversary during message 

falsification, which magnified instability throughout the stream. Likewise, the vehicles downgraded to ACC 

with larger time gaps when compromised by radio jamming. Another study (Islam et al., 2017) analyzed 

cyberattacks and their detection with a CVGuard architecture. They observed conflicts to increase by 10%-

47% under cyberattacks while the CVGuard was observed to reduce 60% of the conflicts after the activation 

of CVGuard. (Cui et al., 2018) used microsimulation to analyze a ten-vehicle platoon (CACC) on a single 

lane under cyberattacks. Jamming was identified as a critical cyberattack and resulted in speed oscillations 

and crashes. They observed injury probability to increase in the range of 4.7%-40.2% under cyberattacks.  

(Khattak et al., 2018) analyzed an active traffic management system (ATM) for risks in its communication 

medium and developed a prototype threat monitoring system to revert the compromised ATM system back 

to normal operation under cyberattacks. The system was able to improve the speed of ATM by 13% and 

reduce the negative impact of cyberattacks. (Li et al., 2018) investigated the cyberattack influence on CAV 

safety. The attack was active for a short duration of time, and they observed rear-end risk collision index for 

deceleration period to be riskier with three attacked vehicles and 0.5% severity compared to nine attacked 

vehicles and 20% severity in acceleration period. (Wardzinski, 2008) proposed a risk based autonomous 

vehicle control system. Vehicle control was required to maintain the lowest acceptable safe risk. The 

minimum distance between vehicles was considered a risk factor for these situations based on constant speed 



and direction of other vehicles. The study concluded that communication and cooperation could improve 

performance and safety. (Y. Wang et al., 2020) developed an anomaly detection algorithm based on SVM to 

detect randomly modeled attacks from a car following model. They observed the algorithm to provide better 

prediction accuracy by 20% than the baseline algorithm. (Wyk et al., 2019) developed an anomaly detection 

algorithm to detect randomly generated attacks using speed and acceleration data from the USDOT Research 

Data Exchange (RDE) database. They used Kalman filter and convolutional neural network for anomaly 

detection and observed their algorithms to perform with high accuracy of 99% for attack detection. 

(Javed et al., 2020) used sensor data including speed and acceleration from the RDE database to 

develop machine learning based anomaly detection algorithm based on normal and randomly generated 

attacks. They observed their ensemble algorithm to outperform classical machine learning methods 96% to 

98% accuracy. (P. Wang et al., 2019) assessed cyberattack effects on a single lane platoon traveling on a 

single lane. They considered cyberattacks similar to the spread of malicious information and observed such 

cyberattacks to significantly disrupt traffic flow. (Khattak et al., 2021) analyzed the safety and stability impact 

of cyberattacks on CAV platoons using a lane management advisory application. They emulated multiple 

cyberattacks and observed a 40% increase in volatility and over 3000 crash conflicts with cyberattacks. 

(Kamel et al., 2020) developed a misbehavior detection algorithm (MDA) using data generated from a 

simulation environment in SUMO. They generated compromised data using six types of attacks and used 

machine learning algorithms (support vector machines and multilayer perceptron) to perform misbehavior 

detection. They observed their MDA to perform well with high accuracy of 93% to 95%.  (Dong et al., 2020) 

utilized simulation-based attacks on cooperative adaptive cruise control platoons to analyze the effects on 

traffic flow and safety. They observed that increasing flow and severity of attacks on attacked vehicles lead 

to negative impacts on traffic flow and higher risks of collisions. (Khan et al., 2020) provided a synthesis of 

potentially critical avenues for cybersecurity to ensure reduction of the probability of cyberattack failures. 

The study provided a description of existing security measures in CAVs and synthesized details of 

cyberattacks on CAVs and mitigation strategies. (Haydari et al., 2021) studied the impact of deep 

reinforcement learning based attacks on traffic signal control with single and multiple intersections. They 

further proposed a sequential anomaly detection model and observed it to perform well for a few known 

attack types in their study using SUMO simulations. (Kloukiniotis et al., 2022) provides a detailed taxonomy 

of defense mechanisms for countering adversarial attacks in automated vehicles. A thorough investigation 

was carried out using adversarial noise removal technique based on deep learning based supervised 

approaches. (Tanksale, 2021) designed a prediction algorithm for LSTM to detect anomalies based on sensor 

data of real autonomous vehicles. The anomalies were emulated in the sensor data and their anomaly 

detection algorithm had an observed sensitivity of 97%-99%. (Haidar et al., 2021) used pseudonym 



certificates for misbehavior detection, where neighboring vehicles detect misbehavior and sends a report to 

a central entity that classifies the report as malicious or genuine.  The study investigates sybil and data replay 

attacks. (Zheng et al., 2023) proposed learning-based algorithm for safe performance of autonomous vehicles. 

Their experimental results showed the ability of the proposed algorithm to enhance the efficiency of control 

policies while enhancing safety. The literature reveals a lack of guidance on understanding the risk of 

cyberattacks in cooperative driving using real experimental data and developing architectures for resilient 

operation of cooperative driving.  

3. Objectives and Contributions 

This research project has the following objectives while accounting for the limitation of past studies. 

1. The study utilizes data from a real CAV platooning experiment to emulate anomalies and detect 

anomalous behavior within lead and following vehicles of the platoon. 

2. The study develops a LAGMM to support anomalous CAV trajectories detection in real-time. The model 

accounts for the temporal relations of the trajectories, which have been ignored in the existing studies. The 

model can improve the detection rates compared to the state-of-the-art methods. 

3. The two-step tasks of the LAGMM (decomposition and density estimation) would be optimized 

simultaneously, which helps it avoid less preferred local optima and further reduce reconstruction errors. 

The model aims to create a compression network for generating low-rank approximation for input data by 

(1) a LSTM autoencoder, which concatenates reduced space features with reconstruction error features, and 

(2) a GMM model to predict likelihood/energy. 

4. Investigation of different types of cyberattacks in cooperative systems to assess how traffic stream 

stability and safety expressed through volatile behavior is affected by cyberattacks. This would indicate the 

impact of different types of cyberattacks on cooperative driving platoons. 

3. Data Description 

This study utilized data from field tests conducted by Federal Highway Administration (FHWA) (Tiernan 

et al., 2017) in collaboration with Volpe Center for a platooning proof of concept based on CACC and 

ACC. The field tests were conducted on a 4.5-mile test track at Aberdeen Center in Maryland. A fleet of 

five Cadillac SRX vehicles were equipped with CACC controllers, with variations of LV and FVs used for 

conducting the field tests. The test track geometry including grades, lane markings, width, and curvature are 

similar to a typical US highway. The test track was designated with geolocations called waypoints that were 

used to send target speeds to LVs, and the LV used these geolocations and global positioning system (GPS) 



to adjust its CACC parameters accordingly. Figure 1 provides a description of the test track along with the 

waypoints for the platooning experiments. A test run was considered complete when the test vehicle 

traveled from the first waypoint to the last waypoint along the track. Figure 2 provides a smoothened 

profile using moving average technique (Hansun, 2014). The acceleration was derived from smoothed 

speed data, which eliminated the difference between acceleration values estimated from raw and smoothed 

data. Furthermore, traffic and crash data from Virginia Department of Transportation was used to validate 

the observed speed profiles for the platoons and the understand crash risk with sudden speed reduction 

under cyberattacks. The results presented later in the report for the speed profiles account for the validation. 

 

Figure 1 Test Track for Field Experiments (Tiernan et al., 2017) 

4. Methodology 

This section discusses the methodology for simulating cyberattacks and for the detection of 

cyberattack anomalies. 

4.1 Methodology for Cyberattack Simulation 
 

The cyberattack anomalies were simulated due to lack of publicly available anomalous 

CAV sensor data. The sensors have been shown to have vulnerability to cyberattacks and 

sensor failures by past research (Currie, 2015; Petit & Shladover, 2015; Trippel et al., 2017). A 

reasonable subset of likely attacks was subjected to a detailed investigation through a series 

of case studies. The cyberattacks were selected based on a higher probability for an attacker 
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to launch these attacks, the ability to compromise CAV operation and safety, and a 

requirement that the attack needs a reasonable level of expertise and cost. Some examples 

of the types of attacks to be considered include. 

1. Senor anomalies. 

2.Infrastructure elements compromised by attacks at the V2I communication. 

2.Communication at the vehicle level compromised by attacks at the network level (V2V). 

With regards to sensor anomalies, three types of attacks were considered. For instance, a 

fake data injection attack through CAN bus or on-board diagnostic (OBD) can compromise 

the in-vehicle speed and acceleration sensors and result in several sensors anomalies. 

Likewise, an adversary with valid credentials can spoof the GPS through jamming or GPS 

spoofing attack and compromise the sensor values, thus generating anomalies. Further, an 

acoustic injection attack can compromise the acceleration sensor and generate anomalies. 

Furthermore, three types of attacks requiring communication access were selected for the 

case studies: fake BSM initiated by spoofing, sybil to access beacons and generate fake 

messages/BSMs to other surrounding vehicles, replay attack initiated when data packets 

stored at a previous instance of time are repeated maliciously or replayed.  

These anomalies were injected into CAV sensors. The initiation of sensor anomalies due to 

attacks or sensor failure would be assumed as independent. A single anomaly was assumed 

in one time epoch due to independent nature of attacks or faults in sensors and reliability of 

sensors. Multiple rates alpha including 1%, 5% and 10% were used to generate several 

anomalous datasets. The anomalies were randomly simulated with random sensors. The 

simulated anomalies were then added to the base or normal sensor values of the 

compromised sensor (within lead vehicle or follower). The anomaly types and durations 

were varied for instance, anomaly to be simulated for 5mins, 20 mins etc. Further, mixed 

anomaly types were also considered for testing sensitivity, which includes multiple 

anomalies mixed. Specifically, the following anomalies and attacks were simulated. 

I. Short anomaly, which is a sudden change in the observed CAV trajectory data. A 

random Gaussian variable having a zero mean and variance of 0.001 was used to 

simulate the anomaly. This was scaled by Nε(0,0.01) to capture the anomaly 

magnitude, where N belongs to 25, 100, 1000, 1000. The value was added to the sensor 

base value.  
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II. Noise, which is a longer-term change (multiple successive readings) in variance of the 

observed CAV trajectory data. The anomaly was simulated as an i.i.d sequence of random 

Gaussian variable with mean of zero, length l and variance c.  

III. Bias, which is an offset from the true sensor readings. This was simulated as a temporary 

offset from the normal readings and captured for various magnitudes using a random 

variable. A uniform distribution was used to sample the anomaly magnitude. The 

anomalous readings are generated by adding the anomaly magnitude to the true sensor 

readings for various durations d ε(25, 50, 100, 1000). 

IV. Gradual drift, which is a gradual drift in the observed data. This anomaly was simulated 

by offsetting the base values with linearly increasing values. For instance, using a linearly 

increasing speed of 0-5mph denoted by cε(3,5) using a function linspace (0,c). The 

anomaly was simulated for various durations. 

V. Fine-grained Spoofing, where attackers can alter, or discard information exchanged 

through Basic Safety Messages (BSMs) between connected automated vehicles. 

VI. Fine grained replay attack replaces the data at current instance of time with an older data 

within a replay period ∆t. 

4.2 Cyberattack and anomaly detection 

As shown in Figure 2, the proposed LAGMM (Wang et al., 2024) consist of two major 

components: (1) a compression network aiming at generating low-rank approximation z for 

input data by a LSTM autoencoder, which concatenate reduced space features zc with 

reconstruction error features zr, (2) a GMM model to predict likelihood/energy. 

Given an input sample x, LSTM autoencoder computes the load-dimensional representation 

z by Eq.(1 - 4): 

zc = h(x;θe) (1) 

x0 = g(zc;θd) (2) 

zr = f(x,x0) (3) 

z = [zc, zr] (4) 

  

where zc is the low-rank approximation learnt by LSTM autoencoder, zr denotes the features 

derived from the reconstruction error, θe and thetad are the parameters of the LSTM 
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autoencoder, x0 is the reconstructed counterpart of x, h(·) and g(·) denote the encoding and 

decoding function, and f(·) denotes the function to calculate reconstruction error features. 

 

Figure 2. An overview of LSTM Autoencoder Gaussian Mixture Model. 

Given the low rank approximation of the input data, the GMM-based estimation network 

aims at estimating the density function. The unknown parameters in GMM are mixture 

component distribution φ, mixture means µ, and mixture covariance Σ. A multi-layer neural 

network (MLNN) was leveraged to predict the mixture membership of each sample data, as 

shown in Eq.(5-6): 

p = MLNN[z;θm] (5) 

  

γˆ = softmax[p] (6) 

  

where γˆ is a vector for the soft mixture-component membership prediction and p is the 

output of the MLNN. Given N samples and the membership prediction, we can further 

estimate the parameters of GMM as follows: 

  (7) 

  (8) 

  (9) 

where φˆ
k, µˆk, Σˆ

k are mixture probability, mean, and covariance for component k in GMM. 

The sample energy can be estimated with the estimated parameters: 
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(10) 

where | · | denotes the determinant of a matrix. 

In the testing process, the energy will be used to predict if the sample data is composed of falsified 

trajectories or not. Higher energy indicates a higher probability of anomalies. 

4.2.1 Objective function 
 

The objective function of the LAGMM is shown in Eq.(11). L(xi,x0i) is the loss function that 

characterizes the reconstruction error caused by the LSTM autoencoder, which can be defined by 

L2-norm. E(zi) denotes the probabilities that the input samples could be observed. Minimizing J
 
aims 

at avoiding singularity problem by penalizing small values of the diagonal entries. 

                         (11) 

 

4.2.2 Hyperparameter Calibration 
 

For the CARMA dataset, the LSTM Autoencoder feeds a three-dimensional input into the 

estimation network, consisting of one reduced dimension and two dimensions derived from 

the reconstruction error. In particular, the LAGMM runs with an LSTM layer with 

dimensions ((20, 4), 128, tanh) and eight Fully Connected (FC) layers with dimensions 

(128, 64, tanh), FC (64, 32, tanh), FC (32, 16, tanh), FC (16, 1, none), FC (1, 16, tanh), FC 

(16, 32, tanh), FC (32, 64, tanh), and FC (64, 128, none). The estimation network performs 

with an FC (3, 10, tanh), a Dropout layer (0.5), and an FC layer (10, 4, softmax). Multiple 

combinations of LSTM and Deep Autoencoder Gaussian Mixture Model (DAGMM) are 

also tested for our model. We have tuned the multiple hyperparameters in this study, 

including LSTM layers, FC layers, dropout rate, and learning rate in the Adam optimizer. 

The configuration is the best model we have achieved so far. 
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5. Results and Discussion 

This section discusses the results of the impact of cyberattacks on cooperative intelligent 

driving and the analysis for resilience and anomaly detection.  

5.1 Analysis of the impact of Cyberattacks on cooperative driving 

To further investigate the influence of cyberattacks on stability of cooperative driving, the 

influence on a 5-vehicle platoon is considered and speed profiles are used to demonstrate 

stability effects. The instability in speed profiles increases at varying levels as soon as the 

attacks begin at 40s in Figure 3 (b-f). Figure 3 (b-d) represents the cases of anomalies 

introduced into the vehicle sensors. The instability increases in these cases compared to the 

baseline (Figure 3a) with speed reduction caused by bottleneck generated over the network. 

This even leads to a potential collision due to pileups of multicar chain reactions. Figure 3e 

and Figure 3f represent spoofing and replay attacks.  The replay attack case seems to be 

more dangerous and shows high variations with abrupt speed changes with respect to time. 

This leads to a highly volatile behavior of following vehicles overtaking their lead vehicles, 

that could lead to potential collision. The spoofing attack in Figure 3(e) represents similar 

but slightly lower patterns of disruption in the traffic stream. Thus, leading to uncertainty in 

flow patterns and potential collisions. 

 

                  a)  baseline- no attack                                                        b)    Short anomaly 
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                c)Gradual drift                                                                                  d) Noise 

 

 

 

 

 

            e) Spoofing                                                                                        f) Replay 

FIGURE 3 Speed profiles for LV after attack. black, green, grey, white, and silver. The 

black vehicle serves as the Leading Vehicle (LV), while the others act as Following 

Vehicles (FVs). 

5.2 Analysis for resilience and anomaly detection 

We consider precision and accuracy to compare anomaly detection performance. We 

selected the threshold to identify anomalous samples. For example, when LAGMM is 

performed on CARMA, the top 20% samples of the highest energy will be marked as 

falsified trajectories. We take anomaly class as positive and define precision and accuracy 

accordingly. 

Figure 4 illustrates the histogram of energy computed from LAGMM model (Wang et al., 

2024). Larger values of energy indicate a higher probability of falsified CAV trajectories. 
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As shown in the figure, most of the samples have negative energy while only a small 

portion of samples have energy higher than 5. 

 
      Figure 4. Histogram of LAGMM Energy. 

Figure 5 shows LAGMM energy of all samples. It suggests that a small portion of samples 

have larger energy, e.g., larger than 10, which indicates a higher probability of CAV 

falsified trajectories or driving patterns. 

 

Figure 5. LAGMM energy of all samples. 

Figure 6 illustrates the normal CAV trajectories (blue dots) and falsified CAV trajectories 

(red dots) in terms of each combination of two features out of total four features (four rows 

and four columns). We compare our proposed model with benchmark studies, including an 

NLP model and DAGMM from (Zong et al., 2018), as shown in Table 1. We started by 

setting 99% of the sample as anomalies. It turns out that the model precision and accuracy 

is similar to random guessing with around 49.43% accuracy and 51.44% precision. As we 

decreased the percentile, the precision and accuracy are also observed to increase, which are 

all higher than the benchmark methods. The percentile drops will enable the data to have a 

more relaxed criteria; thus, it is reasonable to have more accurate results. In addition, 

during our testing, the proposed model can achieve a very fast prediction performance with 
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0.08 s on one sample. This fast response will enable the driver of CAV to make a quick 

decision while seeing the probability of the potential attacks in real time.  

 

Figure 6. LAGMM energy of different features 

Table 1. Performance Comparisons. 

Model—Percentile      Precision           Accuracy        F1 Score 
NLP                                       60.32%               63.88%             1.27 
DAGMM                               64.23%               71.96%             0.092 
LSTM                                    50.87%               51.93%             0.27 
LAGMM—99%                 49.43%                51.44%             0.024 
LAGMM—97%                 64.76%                53.55%             0.058 

LAGMM—70%                 70.63%                74.99%             0.53 
 

Furthermore, the validation performance of the proposed model is promising as shown in 

Table 1. The LAGMM—70% still achieved a better score compared to the traditional 

LSTM or NLP model with 65% accuracy. It is reasonable to believe our model has a great 

trade-off balance between the model complexity and the performance. Since the attacks are 

generated randomly, it is not possible to accurately create a precise numerical comparison 

between different types of attacks. However, we do notice a pattern of prediction, which 

means certain attacks can usually be detected more accurately than others. For example, a 

short anomaly can be identified more accurately than gradual drift, and noise is the least 
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accurate attack that can be found. In this case, identification represents a higher possibility 

of cyberattacks, which is the energy. The reason for such behavior is likely caused by the 

nature of the attacks. The patterns of the first two attacks are likely to be caught by the 

model in the training session. On the other hand, the noise consists of more random 

components, which might need a more complex model structure to identify or learn. Then, 

the question circles back to the trade-off between model complexity and the performance 

again. 

Table 2. Validation testing 

Model—Percentile       Precision         Accuracy           F1 Score 

LAGMM—99%            50.63%            68.47%              0.034 

LAGMM—97%            50.5%              55.1%                0.068 

LAGMM—70%             63%                65.51%              0.54 

 

We further analyzed the performance of LSTM and state of the art models for anomaly 

detection in terms of their accuracy (i.e. true positive and false positive rates) shown in 

Figure 7. The ROC curve reveals better performance when there is more Area under the 

ROC Curve (AUC). We observe in Figure 7 that there is a direct relationship in terms of 

performance with LSTM > T-LSTM > Transformer. 

 

 

             (a) Short Anomaly                                                                   (b) Bias Anomaly 
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                  (c) Gradual drift anomaly                                                 (e)  Spoofing attack 

 

 

Figure 7. ROC Curve for performance 

 

 

 

 

          (f) Replay attack 

      Figure 7. ROC Curves showing area under the curve 

6. Conclusions 

This research developed a framework to study cyberattack simulation and anomaly 

detection within cooperative driving automation. The study utilized real-world data from 

field experiments of cooperative driving automation to simulate cyberattacks and perform 

anomaly detection. The study simulates Spoofing, Message Falsification, and Replay 

attacks based on three anomalies (short, bias and gradual drift) to capture complex attack 

patterns and employs long short-term memory neural network with Gaussian mixture 

model for anomaly detection, ensuring resilient operation of cooperative driving. Our 

aggregation strategies enhance detection performance, and real-world tests confirm the 

framework’s effectiveness. This work advances secure, private, and efficient vehicle 
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platooning, improving the reliability of cooperative driving automation. Future work is 

focusing on federated learning to enhance security of cooperative driving under adversarial 

attacks. 

Acknowledgement 

The work reported in this report is taken from published articles  ‘Anomaly Detection in 

Connected and Autonomous Vehicle Trajectories Using LSTM Autoencoder and Gaussian 

Mixture Model (https://doi.org/10.3390/electronics13071251)’ and ‘Cybersecurity 

vulnerability and resilience of cooperative driving automation for energy efficiency and 

flow stability in smart cities (https://doi.org/10.1016/j.scs.2024.105368)’, which were 

sponsored by this project under Safety 21 BIL UTC and the work was conducted through 

the funding provided by the project. 

Articles Published and in progress 

This project has resulted in the following published papers on cybersecurity in cooperative 

driving and intelligent transportation systems. 

• Anomaly Detection in Connected and Autonomous Vehicle Trajectories Using LSTM 

Autoencoder and Gaussian Mixture Model 

(https://doi.org/10.3390/electronics13071251)  

• Cyberattack Monitoring Architectures for Resilient Operation of Connected and 

Automated Vehicles (10.1109/OJITS.2024.3391830) 

• Cybersecurity vulnerability and resilience of cooperative driving automation for energy 

efficiency and flow stability in smart cities (https://doi.org/10.1016/j.scs.2024.105368) 

• Guanyu Lin, Sean Qian, and Zulqarnain Khattak. Cyberattack vulnerability and 

resilience of cooperative driving automation using federated learning  

• Guanyu Lin, Sean Qian, and Zulqarnain Khattak. Cyberattacks on leader and followers 

in cooperative driving automation: interpretable machine learning with federated agents 

Data Statement 
The raw data for the field experiments is available is available at Federal Highway 

Administration website https://data.transportation.gov/Automobiles/Test-Data-of-Proof-of-

Concept-Vehicle-Platooning-B/ wpek-zziu/about_data. The raw cyberattack data generated 

is available at  ZKhattak11/Cybersecurity-Safety21 (github.com) . 



19 

 

References 
Amoozadeh, M., Raghuramu, A., Chuah, C. N., Ghosal, D., Michael Zhang, H., Rowe, J., & Levitt, K. 

(2015). Security vulnerabilities of connected vehicle streams and their impact on cooperative 

driving. IEEE Communications Magazine, 53(6), 126–132. 

https://doi.org/10.1109/MCOM.2015.7120028 

Bertini, R. L., Wang, H., Knudson, T., Carstens, K., & Rios, E. (2016). Assessing State Department of 

Transportation Readiness for Connected Vehicle – Cooperative Systems Deployment Oregon 

Case Study. Journal of the Transportation Research Board, 2559(November 2015), 24–34. 

https://doi.org/10.3141/2559-04 

Bhavsar, P., Das, P., Paugh, M., Dey, K., & Chowdhury, M. (2017). Risk Analysis of Autonomous 

Vehicles in Mixed Traffic Streams. Transportation Research Record: Journal of the 

Transportation Research Board, 2625, 51–61. https://doi.org/10.3141/2625-06 

Cui, L., Hu, J., Park, B. B., & Bujanovic, P. (2018). Development of a simulation platform for safety 

impact analysis considering vehicle dynamics, sensor errors, and communication latencies: 

Assessing cooperative adaptive cruise control under cyberattack. Transportation Research 

Part C, 97, 1–22. 

Currie, R. (2015). Developments in Car Hacking. SANS Inst. 

Dong, C., Wang, H., Ni, D., Liu, Y., & Chen, Q. (2020). Impact Evaluation of Cyber-Attacks on Traffic 

Flow of Connected and Automated Vehicles. IEEE Access, 8, 86824–86835. 

https://doi.org/10.1109/ACCESS.2020.2993254 

Habibzadeh, H., Nussbaum, B. H., Anjomshoa, F., Kantarci, B., & Soyata, T. (2019). A survey on 

cybersecurity, data privacy, and policy issues in cyber-physical system deployments in smart 

cities. Sustainable Cities and Society, 50. 

https://doi.org/https://doi.org/10.1016/j.scs.2019.101660 

Haidar, F., Makassikis, M., Sall, M., Bakhti, H., Kaiser, A., & Lonc, B. (2021). Experimentation and 

Assessment of Pseudonym Certificate Management and Misbehavior Detection in C-ITS. IEEE 

Open Journal of Intelligent Transportation Systems, 2, 128–139. 

https://doi.org/10.1109/OJITS.2021.3085366 

Hansun, S. (2014). A new approach of moving average method in time series analysis. IEEE 

Conference on New Media Studies (CoNMedia). 

https://doi.org/10.1109/CoNMedia.2013.6708545 

Hasan, M., Mohan, S., Shimizu, T., & Lu, H. (2020). Securing Vehicle-to-Everything (V2X) 

Communication Platforms. IEEE Transactions on Intelligent Vehicles, 5(4), 693–713. 

https://doi.org/10.1109/TIV.2020.2987430 

Haydari, A., Zhang, M., & Chuah, C. N. (2021). Adversarial Attacks and Defense in Deep 

Reinforcement Learning (DRL)-Based Traffic Signal Controllers. IEEE Open Journal of 

Intelligent Transportation Systems, 2, 402–416. https://doi.org/10.1109/OJITS.2021.3118972 



20 

 

Islam, M., Chowdhury, M., Li, H., & Hu, H. (2017). Cybersecurity Attacks in Vehicle to Infrastructure 

Applications and their Prevention. Transportation Research Board 97th Annual Meeting. 

Javed, A. R., Usman, M., Rehman, S. U., Khan, M. U., & Haghighi, M. S. (2020). Anomaly Detection 

in Automated Vehicles Using Multistage Attention-Based Convolutional Neural Network. IEEE 

Transactions on Intelligent Transportation Systems, 1–10. 

https://doi.org/10.1109/tits.2020.3025875 

Kamel, J., Ansari, M. R., Petit, J., Kaiser, A., Jemaa, I. Ben, & Urien, P. (2020). Simulation Framework 

for Misbehavior Detection in Vehicular Networks. IEEE Transactions on Vehicular Technology, 

69(6), 6631–6643. https://doi.org/10.1109/TVT.2020.2984878 

Khan, S. K., Shiwakoti, N., Stasinopoulos, P., & Chen, Y. (2020). Cyber-attacks in the next-

generation cars, mitigation techniques, anticipated readiness and future directions. Accident 

Analysis and Prevention, 148. https://doi.org/https://doi.org/10.1016/j.aap.2020.105837 

Khattak, Z. H., Park, H., Hong, S., Boateng, R., & Smith, B. L. (2018). Investigating Cybersecurity 

Issues in Active Traffic Management Systems. Transportation Research Record, Journal of 

Transportation Research Board. https://doi.org/https://doi.org/10.1177/0361198118787636 

Khattak, Z. H., Smith, B. L., & Fontaine, M. D. (2021). Impact of cyberattacks on safety and stability 

of connected and automated vehicle platoons under lane changes. Accident Analysis & 

Prevention, 150(105861). https://doi.org/10.1016/j.aap.2020.105861 

Kloukiniotis, A., Papandreou, A., Lalos, A., Kapsalas, P., Nguyen, D. V., & Moustakas, K. (2022). 

Countering Adversarial Attacks on Autonomous Vehicles Using Denoising Techniques: A 

Review. In IEEE Open Journal of Intelligent Transportation Systems (Vol. 3, pp. 61–80). 

Institute of Electrical and Electronics Engineers Inc. 

https://doi.org/10.1109/OJITS.2022.3142612 

Kreeb, B., & Gay, K. (2014). Security Credential Management System (SCMS) Proof of Concept 

(POC ). US Department of Transportation. 

Li, Y., Tu, Y., Fan, Q., Dong, C., & Wang, W. (2018). Influence of cyberattacks on longitudinal safety 

of connected and automated vehicles. Accident Analysis and Prevention, 121, 148–156. 

Micro, T. (2017). Cybersecurity Solutions for Connected Vehicles Contents. 

NTCIP1105. (2011). National Transportation Communications for ITS Protocols-CORBA Security 

Service Specification. AASHTO, ITE, NEMA. 

NTCIP9010. (2003). National Transportation Communications for ITS Protocol- XML in ITS Center-

to-Center Communications. AASHTO, ITE, NEMA. 

Petit, J., & Shladover, S. E. (2015). Potential Cyberattacks on Automated Vehicles. IEEE Transctions 

on Intelligent Transportation Systems, 16(2), 546–556. 

Rouse, M. (2016). Cybersecurity. http://whatis.techtarget.com/definition/cybersecurity 



21 

 

Tanksale, V. (2021). Design of Anomaly Detection Functions for Controller Area Networks. IEEE 

Open Journal of Intelligent Transportation Systems, 2, 312–321. 

https://doi.org/10.1109/OJITS.2021.3104495 

Tiernan, T. A., Richardson, N., Azeredo, P., Najm, W. G., & Lochrane, T. (2017). Test and Evaluation 

of Vehicle Platooning Proof-of-Concept Based on Cooperative Adaptive Cruise Control. 

Federal Highway Administration. 

Trippel, T., Weisse, O., Xu, W., Honeyman, P., & Fu, K. (2017). WALNUT:Waging doubt on the 

integrity of MEMS accelerometers with acoustic injection attacks. Proc. IEEE Eur. Symp. 

Secur. Privacy, 2–18. 

Wang, B., Li, W., & Khattak, Z. H. (2024). Anomaly Detection in Connected and Autonomous 

Vehicle Trajectories Using LSTM Autoencoder and Gaussian Mixture Model. Electronics 

(Switzerland), 13(7). https://doi.org/10.3390/electronics13071251 

Wang, P., Yu, G., Wu, X., Wang, Y., & He, X. (2019). Spreading Patterns of Malicious Information on 

Single-Lane Platooned Traffic in a Connected Environment. Computer-Aided Civil and 

Infrastructure Engineering, 34(3), 248–265. https://doi.org/10.1111/mice.12416 

Wang, Y., Masoud, N., & Khojandi, A. (2020). Real-Time Sensor Anomaly Detection and Recovery in 

Connected Automated Vehicle Sensors. IEEE Transactions on Intelligent Transportation 

Systems, 3, 1–11. 

Wardzinski, A. (2008). Dynamic risk assessment in autonomous vehicles motion planning. Proc. 

International Conference on Information Technology, May, 1–4. 

https://doi.org/10.1109/INFTECH.2008.4621607 

Wyk, F. Van, Wang, Y., Khojandi, A., & Masoud, N. (2019). Real-Time Sensor Anomaly Detection 

and Identification in Automated Vehicles. IEEE Transactions on Intelligent Transportation 

Systems, 3, 1–13. 

Zheng, H., Chen, C., Li, S., Zheng, S., Li, S. E., Xu, Q., & Wang, J. (2023). Learning-Based Safe Control 

for Robot and Autonomous Vehicle Using Efficient Safety Certificate. IEEE Open Journal of 

Intelligent Transportation Systems, 4, 419–430. https://doi.org/10.1109/OJITS.2023.3280573 

Zong, B., Song, Q., Min, M. R., Cheng, W., Lumezanu, C., Cho, D., & Chen, H. (2018). Deep 

autoencoding gaussian mixture model for unsupervised anomaly detection. In Proceedings of 

the International Conference on Learning Representations. 

  

 

 



1. Report No. 

 436 

2. Government Accession No. 3. Recipient’s Catalog No. 

4. Title and Subtitle 

Cybersecurity risk assessment in connected intelligent systems for designing 

resilient systems  

5. Report Date 

    31st July 2024 

6. Performing Organization Code  

Enter any/all unique numbers assigned 

to the performing organization, if 

applicable. 

7. Author(s) 

Zulqarnain Khattak, Ph.D., (PI), (https://orcid.org/0000-0002-2599-4852) 

Sean Qian, Ph.D., (Co-PI), (https://orcid.org/0000-0001-8716-8989) 

Gavin Lin, Student Assistant  

8. Performing Organization Report 

No.  

Enter any/all unique alphanumeric 

report numbers assigned by the 

performing organization, if applicable. 

9. Performing Organization Name and Address 

Carnegie Mellon University, Department of Civil and Environmental 

Engineering 

10. Work Unit No. 

 

11. Contract or Grant No. 

Federal Grant No. 69A3552344811  

12. Sponsoring Agency Name and Address 

Safety21 University Transportation Center 

Carnegie Mellon University 

5000 Forbes Avenue 

Pittsburgh, PA 15213  

13. Type of Report and Period 

Covered 

Final Report (July 1, 2023-June 30, 

2024) 

14. Sponsoring Agency Code 

USDOT 

15. Supplementary Notes 

Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration.  

16. Abstract 

Transportation operation and management systems utilize wired and wireless communications for managing roadways 

and are at significant risk of cyberattacks. Furthermore, perfect protection from cyberattacks is not realistic. Thus, this 

research proposes to focus on analyzing the vulnerability of cooperative driving relying on infrastructure-based 

communication using real-field experimental data collected at the Aberdeen center in Maryland. Multiple cyberattacks 

and sensor anomalies were emulated using conditions from field experiments to test the consequences of different types 

of cyberattacks. Long short-term memory with Gaussian mixture (LAGMM) model were utilized to design efficient and 

effective anomaly detection method for accounting the temporal relations of trajectories, so that anomalous behavior 

can be detected in real-time and the severe consequences of cyberattack or sensor anomalies can be avoided. The 

research would help agencies in monitoring the cooperative driving environment for anomalous behavior. 

 

17. Key Words 

Cybersecurity, cyberattack, anomaly detection, long short-

term memory, vehicle platooning, anomaly detection, field 

experiments 

18. Distribution Statement 

No restrictions. This document is available through 

the National Technical Information Service, 

Springfield, VA 22161. Enter any other agency 

mandated distribution statements. Remove NTIS 

statement if it does not apply. 

19. Security Classif. (of this report) 

Unclassified 

20. Security Classif. (of this 

page) 

Unclassified 

21. No. of 

Pages 

21 

22. Price 

- 

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 

 

https://ppms.cit.cmu.edu/projects/detail/436
https://ppms.cit.cmu.edu/projects/detail/436
https://orcid.org/0000-0002-2599-4852

	Khattak, Zulqarnain 436
	Khattak DOT Form




Accessibility Report





		Filename: 

		Cybersecurity risk assessment in connected intelligent_202407_REM.pdf









		Report created by: 

		Nellie Kamau, Catalog Librarian, Nellie.kamau.ctr@dot.gov



		Organization: 

		DOT, NTL







 [Personal and organization information from the Preferences > Identity dialog.]



Summary



The checker found problems which may prevent the document from being fully accessible.





		Needs manual check: 0



		Passed manually: 2



		Failed manually: 0



		Skipped: 1



		Passed: 27



		Failed: 2







Detailed Report





		Document





		Rule Name		Status		Description



		Accessibility permission flag		Passed		Accessibility permission flag must be set



		Image-only PDF		Passed		Document is not image-only PDF



		Tagged PDF		Passed		Document is tagged PDF



		Logical Reading Order		Passed manually		Document structure provides a logical reading order



		Primary language		Passed		Text language is specified



		Title		Passed		Document title is showing in title bar



		Bookmarks		Passed		Bookmarks are present in large documents



		Color contrast		Passed manually		Document has appropriate color contrast



		Page Content





		Rule Name		Status		Description



		Tagged content		Passed		All page content is tagged



		Tagged annotations		Passed		All annotations are tagged



		Tab order		Passed		Tab order is consistent with structure order



		Character encoding		Skipped		Reliable character encoding is provided



		Tagged multimedia		Passed		All multimedia objects are tagged



		Screen flicker		Passed		Page will not cause screen flicker



		Scripts		Passed		No inaccessible scripts



		Timed responses		Passed		Page does not require timed responses



		Navigation links		Passed		Navigation links are not repetitive



		Forms





		Rule Name		Status		Description



		Tagged form fields		Passed		All form fields are tagged



		Field descriptions		Passed		All form fields have description



		Alternate Text





		Rule Name		Status		Description



		Figures alternate text		Passed		Figures require alternate text



		Nested alternate text		Passed		Alternate text that will never be read



		Associated with content		Passed		Alternate text must be associated with some content



		Hides annotation		Passed		Alternate text should not hide annotation



		Other elements alternate text		Failed		Other elements that require alternate text



		Tables





		Rule Name		Status		Description



		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot



		TH and TD		Passed		TH and TD must be children of TR



		Headers		Passed		Tables should have headers



		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column



		Summary		Failed		Tables must have a summary



		Lists





		Rule Name		Status		Description



		List items		Passed		LI must be a child of L



		Lbl and LBody		Passed		Lbl and LBody must be children of LI



		Headings





		Rule Name		Status		Description



		Appropriate nesting		Passed		Appropriate nesting










Back to Top

